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 Starch is a complex carbohydrate with various applications in food and 
other industries. The properties of starch depend on its morphology and 
crystallinity, which different methods can modify. This study examined 
the effects of two types of modifications, crosslinking, and pre-
gelatinization, on the morphology and crystallinity of unripe banana 
starch (Musa balbisiana var. Abu). Scanning electron microscopy (SEM) 
and X-ray diffraction (XRD) were used to analyze starch granules' 
shape, size, structure, and degree of order. This study revealed that 
cross-linking and pre-gelatinization altered the morphology and 
crystallinity of unripe banana starch in different ways. In morphological 
analysis, cross-linking slightly reduced the granule's size, while pre-
gelatinization increased the surface roughness of starch granules. Pre-
gelatinization also disrupted the granular structure and transformed the 
crystallinity pattern from A-type to C-type. Neither modification 
affected the crystallinity index of unripe banana starch. These results 
suggest that cross-linking and pre-gelatinization can be used to tailor the 
properties of unripe banana starch for specific applications. 
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INTRODUCTION 

Starch, a complex carbohydrate consisting of two types of glucose polymers (amylose and 

amylopectin), is produced by most green plants for energy storage [1]. It is widely distributed in various 

foods, such as maize (75%), cassava (14%), wheat (7%), and potato (4%) [2], and has many applications 

in food, paper, pharmaceutical, and other industries [3,4]. One of the sources of starch is bananas, especially 

unripe ones, which are believed to contain a large amount of starch [5]. Banana starch has a high content 

of resistant starch. This indigestible carbohydrate acts as fiber and may have health benefits such as 

improving colon health, increasing satiety, and lowering blood sugar levels [6]. 

Starch modification can be performed by physical, chemical, or enzymatic methods to improve the 

functionality, stability, or digestibility of native starch. Some examples of modified starches are 

hydroxypropylated starch, oxidized starch, and acetylated starch [7]. Two common types of starch 

modification are gelatinization and cross-linking. Suri and Singh [8] stated that gelatinization is a type of 

physical modification that does not involve any chemical and can be obtained by physical treatment that 

involves heating and drying of starch to make it soluble in cold water, which can improve the viscosity, 
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texture, and stability of the starch-based product [7,8]. Cross-linking, on the other hand, is a chemical 

modification that involves forming bonds between the glucose units of starch molecules, which can enhance 

the resistance of starch to heat, shear, and ad [9,10]. The properties of starch are also affected by its 

morphology and crystallinity. 

Cordenunsi-Lysenko et al. [11] mentioned that starch morphology refers to the shape, size, and 

structure of starch granules or grains, which vary depending on the plant source and the environmental 

conditions. Starch morphology can be classified into four types: compound grains, bimodal simple grains, 

uniform, simple grains, and mixed configuration. Starch crystallinity is a measure of the degree of order or 

regularity of the glucose chains in starch granules [12], which can be determined by different techniques, 
such as X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Starch crystallinity 

determination is essential as it influences the gelatinization, retrogradation, solubility, and enzymatic 

hydrolysis of starch. This study investigated the effects of pre-gelatinization and cross-linking, two types 

of starch modification, on the morphology and crystallinity of native starch. It was aimed to understand 

how these modifications alter the shape, size, structure, and degree of order of starch granules. 

MATERIALS AND METHODS 

Materials  

The unripe banana sample (maturity index 2), Musa balbisiana var. Abu was purchased from local 

farmers in Kota Kemuning, Shah Alam, Selangor, Malaysia. The chemicals used in the analysis including 

sodium sulfate (Sigma-Aldrich, USA), sodium tripolyphosphate (Sigma-Aldrich, USA), sodium 

trimetaphosphate (Sigma-Aldrich, USA), sodium hydroxide (Systerm, Malaysia) and hydrochloric acid 

(Systerm, Malaysia) were purchased from Biotek Abadi Sdn. Bhd.  

Production of banana flour 

The method described by Falodun et al. [13] referred to banana flour production with minor 

modifications. After washing and peeling, a slicer was used to cut the banana into slices of 2-3mm 

thickness. Slices were frozen overnight at -40 ° C in a freezer (Sanyo, MDF-U5412, Japan). Then, they 

were freeze-dried at -50℃ and 0.1m Pa using a freeze dryer (Martin Christ, Alpha 1-4 LD plus). The dried 

banana slices were then ground with a dry blender to produce flour and stored in sealed containers for 

further analysis. 

Isolation of Banana Starch 

Following a method from Agama-Acevedo et al. [14] with minor changes, unripe banana starch was 

isolated. Banana flour obtained from the previous method was mixed with 1% sodium sulfate solution (pH 

4.5) at a 1:10 ratio and incubated at room temperature for 18 hours in an incubator shaker (Innova 40, New 
Jersey, USA). The mixture was then filtered through a muslin cloth and a 200-mesh nylon filter to separate 

the starch from the residue. The residue was rinsed several times during the filtration to increase the starch 

yield. The filtrate was centrifuged at 3000 rpm for 15 minutes, and the starch was collected. The starch was 

dried in an oven (Memmert, Germany) for 24 hours at 45 ° C. Lastly, it was ground with a pestle and mortar 

to obtain finely powdered starch that can pass through a 100-mesh screen and stored in glass jars. The starch 

yield was calculated using the following formula: 
 

𝑆𝑡𝑎𝑟𝑐ℎ 𝑦𝑖𝑒𝑙𝑑 (%) =  
𝑊1

𝑊2
 × 100   

 

Where W1 is the weight of starch isolated from a known weight, and W2 is the weight of banana flour used.  

  

Cross-linking of starch  
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Following Park et al. [15], approximately 5 g of starch was dispersed in 75 ml of distilled water with 

sodium sulfate (10%, w/w starch basis) and STMP/STPP (12%, 99: 1 ratio). The dispersion was set to pH 

9.52 with 0.1 N NaOH and heated at 50.6 ℃ for 2 hours at 200 rpm in a shaking water bath (Technohouse, 

Germany). After cooling, 0.1 N HCl was added to reach pH 6.0. Starch was centrifuged (Kubota 5420, 

Japan) at 3,600 rpm for 10 minutes and washed with distilled water (100 ml, three times). The sample was 

dried at 35 ° C for 24 hours, powdered with pestle and mortar, sieved through a 100 mesh screen, and stored 

in a glass jar. 

Pregelatinization of Starch  

This study followed the pre-gelatinization method of Waliszewski et al. [16]. The starch sample (6 g) 
was mixed with distilled water (20 ml) and heated on a hotplate at 50.1 ° C for 14.40 minutes with slow 

stirring. The starch was then dried in an oven (Memmert, Germany) at 40 ° C for 48 hours and collected. 

The dried starch was ground using a pestle and mortar, sieved through a 100-mesh screen, and stored in 

glass jars at room temperature. 

Determination of starch morphology using scanning electron microscopy  

A scanning electron microscopy instrument with model JSM-5410LV (JEOL, USA) with a large field 

detector was used to analyze the starch sample's granule surface, shape, and size. The sample was mounted 

on a copper stub with adhesive tape and gold-coated under vacuum. The acceleration voltage was 15 kV, 

and the vacuum mode was 0.7-0.8 torr. The images were captured at 2000 magnifications. 

Determination of the degree of crystallinity using X-ray diffraction (XRD)  

The starch sample was stored in a sealed container before analysis. XRD patterns were recorded on a 
Siemens D-500 diffractometer in reflection mode from 5 ° to 40° 2θ. Each sample was measured thrice. 

The degree of crystallinity was calculated as follows: 

 

Degree of crystallinity, % = 
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 𝑝𝑒𝑎𝑘

 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ
 x 100  

 
Where the integrated areas were obtained after smoothing and fitting the original peak using the OriginLab 

software. 

RESULTS AND DISCUSSION  

Morphological Properties of native and modified starches 

SEM examined the granular structure of native and modified starch to elucidate the structural 

alterations induced by modification treatments. Yang et al. [17] reported that the genotype, cultivation, and 

amylose-amylopectin ratio affected the starch morphology. In contrast, the shape, size, and damage 

variation were related to the hydrolysis time, starch processing, and modification of chemicals. Figure 1 

shows the SEM images of native, cross-linked, and pre-gelatinized starches at 2000x magnification. 

Native starch showed a smooth, non-porous granule surface with an oval and elongated shape. This 

was consistent with Yang et al. [17], who found that native banana starch had smooth, irregularly shaped 

granules with various shapes and sizes, such as rod, oval, and spheroid. The smooth surface of the starch 
granules indicated that the processes involved in starch preparation did not damage the starch structure. 

The length of native starch granules ranged from 13.5 to 33.2 𝜇m. Oktaviana and Saepudin [18] reported 

that tapioca starch had round and smooth granules with sizes between 4 to 35 𝜇m. 
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Fig.1. SEM images of native (a), cross-linked (b), and pre-gelatinized (c) starches. 

Cross-linked starch exhibited slight changes in granular structure and minor granule damage, especially 

in the large granules. Black zones and large grooves on the granule surface were also observed, suggesting 

a rough surface. This result agreed with Korkut and Kahraman [19] and Rao and Parimalavalli [20], who 

observed that cross-linked tapioca and corn starch had rougher and more irregular granule surfaces than 

their native counterparts. Omojola et al. [21] also noted similar findings with minor granule aggregation 

and distortion of cross-linked cola starch. The black zones or grooves observed implied slight fragmentation 

[22], and the minor damages were due to a lower level of cross-linking introduced [23]. Moreover, the SEM 

images showed that cross-linked starch had more compacted and larger granules, ranging from 18.4 to 44.5 

𝜇m, compared to native starch. 

Pre-gelatinized starch displayed more noticeable changes as deep grooves on the granule surface and 

more aggregated granules were detected, along with shrinking in granule size. This might be attributed to 

the disintegration and subsequent release of soluble constituents during the thermal process of pre-

gelatinization [24]. The reduction of average length size range from 13.5 to 33.2 𝜇m of native starch to 12.3 

to 26.5 𝜇m, with closely packed granules, was due to mild heat treatment, gelatinization, and rupture 

occurrence during the modification process, which was hypothesized to affect the granule size [25]. 

Furthermore, the treatment temperature disrupted the hydrogen bond between starch molecules and 

destroyed the amylopectin crystallinity, resulting in bond rearrangement within the granules, leading to 

(a) (b) 

(c) 

https://doi.org/10.24191/
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granule integrity loss [22,24]. Wijanarka et al. [26] and Adewumi et al. [27] described similar effects of 

pre-gelatinization on gay flour and cassava starch, respectively. 

Crystallinity properties of native and modified starches 

The crystalline structure and characteristics of the starch granules were investigated by X-ray 

diffractometer. Chang et al. [28] reported that the crystalline structures of starch were classified into three 

types of XRD patterns: A, B, and C. The XRD patterns of native and modified starches are shown in Figure 

2, while the crystallization percentages are given in Table 1. 

 

 

 

Fig. 2. XRD Spectra curves of native and modified starches 

The XRD patterns of both native and cross-linked starch showed similar features, with solid diffraction 

peaks of 2𝜃 at 15° and 17° and a small unresolved doublet at 23° and 24°. These peaks indicated the 

characteristic A-type crystallinity of the starch (corresponding to the double helices). This implied that the 

cross-linking process did not alter the native banana starch crystallinity, which was consistent with the 
findings of Korkut and Kahraman [19] for tapioca starch. Koo et al. [29] also found that the cross-linked 

corn starches maintained their XRD patterns when the ratio of STMP  to STPP was less than 12%. This 

suggested that the cross-linking treatment only substituted the functional groups in the starch amylose and 

amylopectin chains, thereby enhancing the starch granule stability without creating new crystalline regions 

[30]. Therefore, it indicated that the cross-linking mainly occurred in the amorphous regions, as confirmed 

https://doi.org/10.24191/
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by Sriprablom et al. [6]. However, Marta et al. [31] reported that native and cross-linked banana flour 

exhibited B-type crystallinity. 

On the other hand, pre-gelatinized starch displayed firm peaks of 2𝜃 at similar angles of 15°, 17° and 

23°, but without any double peaks. This revealed a C-type crystallinity of the starch, which agreed with the 

result of Remya et al. [32]. The lack of peak at 24° indicated that the gelatinization during the pre-

gelatinization modification weakened the starch granules and slightly affected the starch crystal properties. 

Li et al. [33] observed a shift from B-type to C-type crystallinity of buckwheat starch after pre-gelatinization 

using a twin drum drier. 

The crystal structure of banana starch was an essential factor that influenced its functional properties, 

and it depended on various factors such as the source variety, composition, growing condition or isolation 

technique [34,35], and the branching patterns of amylopectin in the starch granules [32]. Starches with short 

amylopectin branches (dp; degree of polymerization 23-29) showed A-type XRD patterns, while starches 

with long amylopectin branches (dp 30-44) showed B-type patterns, and starches with intermediate 

amylopectin branches (dp 26-20) showed C-type patterns [35]. Chen et al. [36] also stated that shorter 

branches (dp 6-12) might cause defects in the crystal structure as they could not form perfect double helices. 

 

Table 1: Degree of crystallinity (%) of native and modified starches 

Starch sample Native Cross-linked Pre-gelatinized 

Degree of crystallinity, (%) 65.40a ± 5.93 65.29a ± 5.25 64.18a ± 2.01 

 

As the XRD patterns were almost identical, there was no significant difference in the degree of 
crystallinity between both modified starches and the native starch (Table 1). This was similar to the results 

reported by Shi et al. [37] for pea starch. The lower degree of crystallinity of the pre-gelatinized starch 

suggested its weaker crystal structure due to the thermal treatment during the modification process. The 

relative degree of crystallinity of starch also depended on factors such as amylose-amylopectin ratio, 

average chain length of amylopectin units, crystal size, and orientation of double helices to X-ray beam 

[36,38]. The area under the fitted curve in Figure 2 represented the amorphous content of the starch, and 

the total area under the peaks represented its crystalline content. The linear amylose chains contributed to 

the amorphous character, while the double helices of amylopectin formed crystalline structures [39]. 

Therefore, a higher proportion of amylopectin in the starch granules resulted in higher crystallinity. 

CONCLUSION 

To summarize, the modification process resulted in changes in the morphology and crystallinity of 

native starch. The morphological damage was more evident in pre-gelatinized starch than in cross-linked 
starch, as shown by the disrupted granular structure and the increased surface roughness. Pre-gelatinization 

also affected the crystallinity pattern of native starch, transforming it from A-type to C-type, which 

indicated a rearrangement of the amylose and amylopectin chains. However, neither modification 

significantly impacted the crystallinity index of native starch, as measured by X-ray diffraction. 
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